Хэрэглэгч:Tsogo3/Ноорог/Үндсэн өгүүллэгээс/Протон

Протон

Протоны кварк бүтэц
Бүтэц: 2 дээш, 1 доош
Аймаг: Фермион
Бүлэг: Кварк
Харилцан үйлчлэл: Гравитац, Цахилгаан соронзон, Сул, Хүчтэй
Эсрэг бөөм: Антипротон
Нээсэн: Эрнест Резерфорд (1919)
Тэмдэглэгээ: p+
Масс: 1.672 621 71(29) × 10−27 кг

938.272 029(80) MeV/c2

1.007 276 466 88(13) u
Цэнэг: 1.602 176 53(14) × 10−19 C
Спин: ½


Физикт, протон (Грек: πρώτον / proton буюу "анхны", "үндсэн" гэсэн утгатай) нь нэг нэгж эерэг цэнэгтэй (1.602 × 10−19 кулон), атомын дотоод дахь эгэл бөөм юм. Диаметр нь ойролцоогоор 1.6 to 1.7×10−15 м [1], масс нь 1.6726 × 10−27 кг буюу электроны массаас 1836 дахин хүнд болно.

Протон нь 1/2 спинтэй, фермион бөгөөд 3 кваркаас (барион) тогтоно[2]. Протоны 2 U-кварк, 1 D-кваркууд нь хүчтэй цөмийн харилцан үйлчлэлээр холбогдоно.

Протон ба нйетрон нь цөмийн хүчээр холбогдон атомын цөмийг үүсгэнэ. устөрөгч-1 нь нейтронгүй бөгөөд цөм нь ганц протоноос тогтоно. Бусад бүх атомын цөм нь тодорхой тооны протон ба нейтронтой. Цөм дэх протоны тоогоор тухайн атомын химийн шинж чанар тодорхойлогдоно.

Тогтвортой байдал засварлах

Протон нь тогтвортой бөгөөд онолын хувьд түүний хагас задралын хугацаа нь 1×1036 жил болно. Өөрөөр хэлбэл протоны задралыг тогтоох боломжгүй юм.

Өндөр энергийн тусламжтайгаар протон нь нейтрон руу хувирч болно. Гэхдээ энэ процесс байгаль дээр явагдахгүй.

 
p - протон,
e - электрон,
n - нейтрон,
  - электрон нейтрино

Энэ процесс нь эргэх урвал, өөрөөр хэлбэл нейтрон нь вета задралаар (цацраг идэвхит задралын нэгэн түгээмэл хэлбэр) протон болно. Чөлөөт нейтроны бүрэн задралын хугацаа нь ойролцоогоор 15 минут байна.

In physics and biochemistry засварлах

In physics and biochemistry, the proton is thought of as the hydrogen ion, denoted H+. In this context, a proton donor is an acid and a proton acceptor is a base (see acid-base reaction theories). However it should be noted that the hydrogen ion is not observed in aqueous solution; instead we observe the hydronium ion, which is considered a proton donating ion.

History засварлах

Ernest Rutherford is generally credited with the discovery of the proton. In 1918 Rutherford noticed that when alpha particles were shot into nitrogen gas, his scintillation detectors showed the signatures of hydrogen nuclei. Rutherford determined that the only place this hydrogen could have come from was the nitrogen, and therefore nitrogen must contain hydrogen nuclei. He thus suggested that the hydrogen nucleus, which was known to have an atomic number of 1, was an elementary particle.

Мөн үзэх: William Prout болон Prout's hypothesis

Prior to Rutherford, Eugene Goldstein had observed canal rays, which were composed of positively charged ions. After the discovery of the electron by J.J. Thomson, Goldstein suggested that since the atom is electrically neutral there must be a positively charged particle in the atom and tried to discover it. He used the "canal rays" observed to be moving against the electron flow in cathode ray tubes. After the electron had been removed from particles inside the cathode ray tube they became positively charged and moved towards the cathode. Most of the charged particles passed through the cathode, it being perforated, and produced a glow on the glass. At this point, Goldstein believed that he had discovered the proton.[3] When he calculated the ratio of charge to mass of this new particle (which in case of the electron was found to be the same for every gas that was used in the cathode ray tube) was found to be different when the gases used were changed. The reason was simple. What Goldstein assumed to be a proton was actually an ion. He gave up his work there. But promised that "he would return." However, he was widely ignored.

Antiproton засварлах

Гол өгүүлэл: antiproton

The antiparticle of the proton is the antiproton. It was discovered in 1955 by Emilio Segrè and Owen Chamberlain, for which they were awarded the 1959 Nobel Prize in Physics.

CPT-symmetry puts strong constraints on the relative properties of particles and antiparticles and, therefore, is open to stringent tests. For example, the charges of the proton and antiproton must sum to exactly zero. This equality has been tested to one part in 108. The equality of their masses is also tested to better than one part in 108. By holding antiprotons in a Penning trap, the equality of the charge to mass ratio of the proton and the antiproton has been tested to 1 part in 9×1011. The magnetic moment of the antiproton has been measured with error of 8×10−3 nuclear Bohr magnetons, and is found to be equal and opposite to that of the proton.

High-energy physics засварлах

Due to their stability and large mass (compared to electrons), protons are well suited to use in particle colliders such as the Large Hadron Collider at CERN and the Tevatron at Fermilab. Protons also make up a large majority of the cosmic rays which impinge on the Earth's atmosphere. Such high-energy proton collisions are more complicated to study than electron collisions, due to the composite nature of the proton. Understanding the details of proton structure requires quantum chromodynamics.

Мөн үзэх засварлах


Ишлэл засварлах

  1. Weisstein, Eric (1996–2007). "Proton -- from Eric Weisstein's World of Physics". Wolfram Research, Inc. Retrieved 2007-01-16.{{cite web}}: CS1 maint: date format (link)
  2. Adair, Robert K.: "The Great Design: Particles, Fields, and Creation.", page 214. New York: Oxford University Press, 1989.
  3. Gilreath, Esmarch S.: "Fundamental Concepts of Inorganic Chemistry.", page 5. New York: McGraw-Hill, 1958.


Гадаад холбоос засварлах