Төгсгөлөг ялгавар: Засвар хоорондын ялгаа

Content deleted Content added
No edit summary
No edit summary
Мөр 48:
In an analogous way one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for {{math|''f ' ''(''x''+''h''/2)}} and {{math|''f ' ''(''x''−''h''/2)}} and applying a central difference formula for the derivative of {{mvar| f '}} at {{mvar|x}}, we obtain the central difference approximation of the second derivative of {{mvar|f}}:
 
'''2-р эрэмбийн төвийн ялгавар'''
'''2nd order central'''
:<math> f''(x) \approx \frac{\delta_h^2[f](x)}{h^2} = \frac{f(x+h) - 2 f(x) + f(x-h)}{h^{2}} . </math>
 
Similarly we can apply other differencing formulas in a recursive manner.
 
'''2-р эрэмбийн давших ялгавар'''
'''2nd order forward'''
:<math> f''(x) \approx \frac{\Delta_h^2[f](x)}{h^2} = \frac{f(x+2h) - 2 f(x+h) + f(x)}{h^{2}} . </math>
 
More generally, the '''{{mvar|n}}-th order forward, backward, and central''' differences are given by, respectively,
 
'''Давших ялгавар'''
'''Forward'''
:<math>\Delta^n_h[f](x) =
\sum_{i = 0}^{n} (-1)^i \binom{n}{i} f(x + (n - i) h),
Мөр 66:
:<math>\Delta^n [f](x)= \sum_{k=0}^n\binom nk(-1)^{n-k}f(x + k)</math>
 
'''BackwardУхрах'''
:<math>\nabla^n_h[f](x) =
\sum_{i = 0}^{n} (-1)^i \binom{n}{i} f(x - ih),
</math>
 
'''CentralТөвийн'''
:<math>\delta^n_h[f](x) =
\sum_{i = 0}^{n} (-1)^i \binom{n}{i} f\left(x + \left(\frac{n}{2} - i\right) h\right).